Обогрев теплогенераторами

Звоните:


+7 (495) 268-12-06
+7 (4862) 72-09-58

Системы воздушного отопления

В целом ряде случаев можно значительно уменьшить капитальные и эксплуатационные затраты, обеспечив автономное отопление помещений теплым воздухом на основе применения теплогенераторов, работающих на газе или жидком топливе. В таких агрегатах нагревается не вода, а воздух ? свежий приточный, рециркуляционный или смешанный. Такой способ особенно эффективен для обеспечения автономного отопления производственных помещений, выставочных павильонов, мастерских, гаражей, станций технического обслуживания, автомобильных моек, киностудий, складов, общественных зданий, спортзалов, супермаркетов, теплиц, оранжерей, животноводческих комплексов, птицеферм и т.п.

Преимущества воздушного отопления 
Преимуществ воздушного способа отопления перед традиционным водяным в больших по объему помещениях много, перечислим лишь основные: 

1. Экономичность. 
Тепло производится непосредственно в нагреваемом помещении и практически целиком расходуется по назначению. Благодаря прямому сжиганию топлива без промежуточного теплоносителя достигается высокий тепловой КПД всей системы отопления: 90-94% для рекуперативных нагревателей и практически 100% для систем прямого нагрева. Применение программируемых термостатов обеспечивает возможность дополнительной экономии от 5 до 25 % тепловой энергии за счет функции дежурного режима автоматического поддержания температуры в помещении в нерабочее время на уровне +5-7ºС. 

2. Возможность "включить" приточную вентиляцию. Ни для кого не секрет, что сегодня на большинстве предприятий приточная вентиляция не работает должным образом, что значительно ухудшает условия работы людей и влияет на производительность труда. Теплогенераторы или системы прямого нагрева прогревают воздух на ∆t до 90ºС  этого вполне достаточно для того, чтобы "заставить" работать приточную вентиляцию даже в условиях Крайнего Севера. Таким образом, воздушное отопление подразумевает собой не только экономическую эффективность, но и улучшение экологической обстановки и условий труда. 

3. Малая инерционность. Агрегаты систем воздушного отопления в считанные минуты выходят на рабочий режим, а за счет высокой оборачиваемости воздуха, помещение полностью прогревается всего за несколько часов. Это дает возможность оперативно и гибко маневрировать при изменении потребностей в тепле. 

4. Отсутствие промежуточного теплоносителя позволяет отказаться от строительства и содержания малоэффективной для больших помещений системы водяного отопления, котельной, теплотрасс и станции водоподготовки. Исключаются потери в теплотрассах и их ремонт, что позволяет резко снизить эксплуатационные расходы. В зимнее время отсутствует риск размораживания калориферов и системы отопления в случае продолжительного отключения системы. Охлаждение даже до глубокого "минуса" не приводит к размораживанию системы. 

5. Высокая степень автоматизации позволяет вырабатывать ровно то количество тепла, в котором есть необходимость. В сочетании с высокой надежностью газового оборудования это значительно повышает безопасность системы отопления, а для ее эксплуатации достаточно минимума обслуживающего персонала. 

6. Малые затраты. Способ отопления крупных помещений при помощи теплогенераторов один из самых дешевых и быстро реализуемых. Капитальные затраты на строительство или реконструкцию воздушной системы, как правило, значительно ниже расходов на организацию водяного или лучистого отопления. Срок окупаемости капитальных затрат обычно не превышает одного-двух отопительных сезонов. В зависимости от решаемых задач, в системах воздушного отопления могут применяться нагреватели различного типа. В этой статье мы рассмотрим только агрегаты, работающие без применения промежуточного теплоносителя  рекуперативные воздухонагреватели (с теплообменником и отводом продуктов сгорания наружу) и системы прямого нагрева воздуха (газовые смесительные воздухонагреватели).

Рекуперативные воздухонагреватели

 В агрегатах этого типа топливо, смешанное с необходимым количеством воздуха, подается горелкой в камеру сгорания. Образовавшиеся продукты горения проходят через двух- или трехходовой теплообменник. Тепло, полученное при сгорании топлива, передается нагреваемому воздуху через стенки теплообменника, а дымовые газы через дымоход отводятся наружу (рис. 1) именно поэтому их называют теплогенераторами "непрямого нагрева". Рекуперативные воздухонагреватели могут быть использованы не только непосредственно для отопления, но и в составе системы приточной вентиляции, а также для технологического нагрева воздуха. Номинальная тепловая мощность таких систем от 3 кВт до 2 МВт. Подача нагреваемого воздуха в помещение осуществляется через встроенный или выносной нагнетающий вентилятор, что дает возможность использования агрегатов как для прямого подогрева воздуха с выдачей его через жалюзийные решетки, так и с воздуховодами. Омывая камеру сгорания и теплообменник, воздух нагревается и направляется либо непосредственно в отапливаемое помещение через расположенные в верхней части жалюзийные воздухораспределительные решетки, либо распределяется по системе воздуховодов. На лицевой части теплогенератора расположена автоматизированная блочная горелка (рис. 2)

Теплообменники современных воздухонагревателей, как правило, изготовлены из нержавеющей стали (топка из жаропрочной стали) и служат от 5 до 25 лет, после которых могут быть отремонтированы или заменены. КПД современных моделей достигает 90-96%. Главное преимущество рекуперативных воздухонагревателей их универсальность. Они могут работать на природном или сжиженном газе, дизельном топливе, нефти, мазуте или отработанном масле стоит только поменять горелку. Существует возможность работы со свежим воздухом, с подмесом внутреннего и в режиме полной рециркуляции. Такая система позволяет некоторые вольности, например, изменять расход нагреваемого воздуха, "на ходу" перераспределять потоки нагретого воздуха в разные ветви воздуховодов при помощи специальных клапанов.Летом рекуперативные воздухонагреватели могут работать в режиме вентиляции. Монтируются агрегаты как в вертикальном, так и в горизонтальном положении, на полу, стене, или встраиваются в секционную венткамеру в качестве секции нагревателя. Рекуперативные воздухонагреватели могут быть использованы даже для отопления помещений высокой категории комфортности, в случае если сам агрегат будет вынесен за пределы зоны непосредственного обслуживания. 
Основные недостатки: 
1. Большой и сложный теплообменник увеличивает стоимость и вес системы, по сравнению с воздухонагревателями смесительного типа; 
2. Нуждаются в дымовой трубе и отводе конденсата.


Системы прямого нагрева воздуха

Современные технологии позволили добиться такой чистоты сжигания природного газа, что появилась возможность не отводить продукты сгорания "в трубу", а использовать их для прямого нагрева воздуха в системах приточной вентиляции. Газ, поступающий на горение, полностью сгорает в потоке нагреваемого воздуха и, смешиваясь с ним, отдает ему все тепло. Этот принцип реализован в ряде аналогичных конструкций рамповой горелки в США, Англии, Франции и России и с успехом используется с 60-х годов XX века на многих предприятиях России и за рубежом. Основанные на принципе сверхчистого сжигания природного газа непосредственно в потоке нагреваемого воздуха газовые смесительные воздухонагреватели типа STV (STARVEINE "звездный ветер") производятся с номинальной тепловой мощностью от 150 кВт до 21 МВт. Сама технология организации горения, а также высокая степень разбавления продуктов горения, позволяют получить в установках чистый теплый воздух в соответствии со всеми действующими нормами, практически не содержащий вредных примесей (не более 30% ПДК). Воздухонагреватели STV (рис. 3) состоят из модульного горелочного блока, расположенного внутри корпуса (участка воздуховода), газовой линии DUNGS (Германия) и системы автоматики. Корпус, как правило, оснащен гермодверью для удобства обслуживания. Горелочный блок, в зависимости от требуемой тепловой мощности, компонуется из необходимого количества горелочных секций разной конфигурации. Автоматика нагревателей обеспечивает плавный автоматический пуск по циклограмме, контроль параметров безопасной работы и возможность плавного регулирования тепловой мощности (1:4), что позволяет автоматически поддерживать необходимую температуру воздуха в отапливаемом помещении. 

Применение газовых смесительных воздухонагревателей 
Главное их предназначение - прямой нагрев свежего приточного воздуха, подаваемого в производственные помещения для компенсации вытяжной вентиляции и улучшения, таким образом, условий работы людей. Для помещений с большой кратностью воздухообмена возникает целесообразность совмещения системы приточной вентиляции и системы отопления - в этом плане у систем прямого нагрева нет конкурентов по соотношению цена/качество. Газовые смесительные воздухонагреватели предназначены для: 

·         автономного воздушного отопления помещений различного назначения с большим воздухообменом (К 1,5);

  •  нагрева воздуха в воздушно-тепловых завесах отсечного типа, возможно совмещение с системами отопления и приточной вентиляции;

  • систем предпускового подогрева двигателей автомобилей на неотапливаемых стоянках;

  • отогрева и оттайки вагонов, цистерн, автомобилей, сыпучих материалов, нагрева и сушки изделий перед покраской или другими видами обработки;

прямого нагрева атмосферного воздуха или сушильного агента в различных установках технологического нагрева и сушки, например, сушка зерна, травы, бумаги, текстиля, древесины; применения в камерах окраски и сушки после покраски и т.п. 

Размещение 
Смесительные нагреватели могут быть встроены в воздушные каналы систем приточной вентиляции и тепловых завес, в воздуховоды сушильных установок как на горизонтальных, так и на вертикальных участках. Могут монтироваться на полу или площадке, под потолком или на стене. Размещаются, какправило, в приточно-вентиляционных камерах, но возможна их установка и непосредственно в отапливаемом помещении (в соответствии с категорией). При дополнительном оборудовании соответствующими элементами могут обслуживать помещения категорий А и Б. Рециркуляция внутреннего воздуха через смесительные воздухонагреватели нежелательна возможно существенное снижение уровня кислорода в помещении. 

Сильные стороны систем прямого нагрева 
Простота и надежность, низкая себестоимость и экономичность, возможность нагрева до высоких температур, высокая степень автоматизации, плавное регулирование, не нуждаются в устройстве дымохода. Прямой нагрев - самый экономичный способ - КПД системы равен 99,96 %. Уровень удельных капитальных затрат на систему отопления на базе установки прямого нагрева, совмещенной с приточной вентиляцией, самый низкий при высочайшей степени автоматизации. Воздухонагреватели всех типов оснащены системой автоматики безопасности и управления, обеспечивающей плавный пуск, поддержание режима нагрева и отключение в случае возникновения аварийных ситуаций. В целях энергосбережения возможно оснащение воздухонагревателей автоматикой регулирования с учетом наружной и контролем внутренней температур, функциями суточного и недельного режимов программирования нагрева. Возможно также включение параметров системы отопления, состоящей из многих отопительных агрегатов, в систему централизованного управления и диспетчеризации. В этом случае оператор-диспетчер будет иметь оперативную информацию о работе и состоянии отопительных агрегатов, наглядно отображенной на мониторе компьютера, а также управлять режимом их работы непосредственно из удаленного диспетчерского пункта. 

Мобильные теплогенераторы и тепловые пушки 
Предназначены для временного применения - на стройках, для отопления в межсезонные периоды, технологического нагрева. Мобильные теплогенераторы и тепловые пушки работают на пропане (сжиженном баллонном газе), дизельном топливе или керосине. Могут быть как прямого нагрева, так и с отводом продуктов сгорания. 

Типы систем автономного воздушного отопления 
Для автономного теплоснабжения различных помещений применяются различные типы систем воздушного отопления - с централизованным распределением тепла и децентрализованные; системы, работающие полностью на приток свежего воздуха, или с полной/частичной рециркуляцией внутреннего воздуха. В децентрализованных системах воздушного отопления нагрев и циркуляция воздуха в помещении осуществляются автономными теплогенераторами, расположенными в различных участках или рабочих зонах - на полу, стене и под крышей. Воздух из нагревателей подается непосредственно в рабочую зону помещения. Иногда для лучшего распределения тепловых потоков теплогенераторы оснащают небольшими (локальными) системами воздуховодов. Для агрегатов в таком исполнении характерна минимальная мощность электродвигателя вентилятора, поэтому децентрализованные системы более экономичны в плане расхода электроэнергии. Возможно также использование воздушно-тепловых завес как части системы воздушного отопления или приточной вентиляции. Возможность локального регулирования и использования теплогенераторов по мере необходимости по зонам, в различное время дает возможность значительного снижения расходов на топливо. Однако капитальные затраты на реализацию данного способа несколько выше. В системах с централизованным распределением тепла используются воздушно-отопительные агрегаты; вырабатываемый ими теплый воздух поступает в рабочие зоны по системе воздуховодов. Установки, как правило, встраиваются в существующие венткамеры, но допускается возможность размещения их непосредственно в обогреваемом помещении на полу или на площадке. 

Применение и размещение, подбор оборудования 
У каждого из типов вышеперечисленных отопительных агрегатов есть свои неоспоримые преимущества. И нет готового рецепта, в каком случае какой из них целесообразнее это зависит от многих факторов: величины воздухообмена в соотнесении с величиной теплопотерь, категории помещения, наличия свободного места для размещения оборудования, от финансовых возможностей. Попытаемся сформировать наиболее общие принципы целесообразного подбора оборудования. 

1. Системы отопления для помещений с небольшим воздухообменом (Квоздухообмена ≤0,5-1) 
Суммарная тепловая мощность теплогенераторов в этом случае принимается практически равной количеству тепла, необходимого для компенсации теплопотерь помещения, вентиляция сравнительно мала, поэтому здесь целесообразно применение системы отопления на основе теплогенераторов непрямого нагрева с полной или частичной рециркуляцией внутреннего воздуха помещения. Вентиляция в таких помещениях может быть естественной или с подмесом уличного воздуха к рециркулирующему. Во втором случае мощность нагревателей увеличивают на величину, достаточную для нагрева свежего приточного воздуха. Такая система отопления может быть местной, с напольными или настенными теплогенераторами. При невозможности размещения установки в отапливаемом помещении либо при организации обслуживания нескольких помещений можно применить систему централизованного типа: теплогенераторы расположить в венткамере (пристрое, на антресолях, в соседнем помещении), а тепло распределять по воздуховодам. В рабочее время теплогенераторы могут работать в режиме частичной рециркуляции, попутно нагревая подмешиваемый приточный воздух, в нерабочее можно некоторые из них отключать, а оставшиеся переводить на экономичный дежурный режим +2-5ºС с полной рециркуляцией. 

2. Системы отопления для помещений с большой кратностью воздухообмена, постоянно нуждающиеся в подаче больших объемов приточного свежего воздуха (Квоздухообмена >2) 
В этом случае количество тепла, необходимое для нагрева приточного воздуха, может уже в несколько раз превышать количество тепла, необходимое для компенсации теплопотерь. Здесь наиболее целесообразно и экономично совмещение системы воздушного отопления с системой приточной вентиляции. Система отопления может строиться на основе установок прямого нагрева воздуха, или на основе применения рекуперативных теплогенераторов в исполнении с повышенной степенью нагрева. Суммарная тепловая мощность нагревателей должна быть равна сумме тепловой потребности на нагрев приточного воздуха и тепла, необходимого для компенсации теплопотерь. В системах прямого нагрева происходит нагрев 100 % уличного воздуха, обеспечивая подачу необходимого объема приточного воздуха. В рабочее время они нагревают воздух от уличной до расчетной температуры +16-40ºС (с учетом перегрева для обеспечения компенсации теплопотерь). С целью экономии в нерабочее время можно выключать часть нагревателей для снижения расхода приточного воздуха, а оставшиеся перевести на дежурный режим поддержания +2-5ºС. Рекуперативные теплогенераторы в дежурном режиме позволяют обеспечить дополнительную экономию за счет перевода их в режим полной рециркуляции. Наименьшие капитальные затраты при организации систем отопления централизованного типа при применении как можно более крупных нагревателей. Капитальные затраты на газовые смесительные воздухонагреватели STV могут составить от 300 до 600 руб/кВт установленной тепловой мощности. 

3. Комбинированные системы воздушного отопления 
Оптимальный вариант для помещений со значительным воздухообменом в рабочее время при односменном режиме работы, либо прерывистом рабочем цикле - когда разница в необходимости подачи приточного воздуха и тепла в течение дня значительна. В этом случае целесообразно раздельное функционирование двух систем: дежурного отопления и приточной вентиляции, совмещенной с системой отопления (догрева). При этом в отапливаемом помещении или в венткамерах устанавливаются рекуперативные теплогенераторы для поддержания только дежурного режима с полной рециркуляцией (при расчетной наружной температуре). Система приточной вентиляции, совмещенная с системой отопления, обеспечивает нагрев необходимого объема свежего приточного воздуха до +16-30ºС и догрев помещения до необходимой рабочей температуры и в целях экономии включается только в рабочее время. Строится она либо на основе рекуперативных теплогенераторов (с повышенной степенью нагрева), либо на основе мощных систем прямого нагрева (что дешевле в 2-4 раза). Возможна комбинация приточной системы догрева с существующей системой водяного отопления (может оставаться дежурной), вариант применим также для стадийной модернизации существующей системы отопления и вентиляции. При таком способе эксплуатационные расходы будут наименьшими. Таким образом, применяя воздухонагреватели различных типов в различных комбинациях, можно решить одновременно обе задачи - и отопление, и приточную вентиляцию. Примеров применения систем воздушного отопления очень много и возможности комбинации их чрезвычайно разнообразны. В каждом случае необходимо провести тепловые расчеты, учесть все условия применения и выполнить несколько вариантов подбора оборудования, сравнивая их по целесообразности, величине капитальных затрат и эксплуатационных расходов.

Вернуться к списку